• 移动端
    访问手机端
    官微
    访问官微

    搜索
    取消
    温馨提示:
    敬爱的用户,您的浏览器版本过低,会导致页面浏览异常,建议您升级浏览器版本或更换其他浏览器打开。

    鄞州银行:符合中小银行质量提升的数据治理方案

    来源:中国电子银行网 2023-04-20 17:33:21 数字金融创新大赛 鄞州银行 数据治理
         来源:中国电子银行网     2023-04-20 17:33:21

    核心提示鄞州银行利用数据治理成熟度评估模型进行问题分析定位,重点围绕数据规划、组织机制、标准建设以及数据类平台建设等方面进行数据质量提升。

    第六届(2023)数字金融创新大赛专题

    案例名称

    符合中小银行质量提升的数据治理方案

    案例简介

    数字化转型的驱动和数据治理“严监管”的推动下,为解决金融机构数据治理体系不健全、数据质量低下等问题,利用数据治理成熟度评估模型进行问题分析定位,重点围绕数据规划、组织机制、标准建设以及数据类平台建设等方面进行数据质量提升。通过应用实践,总结归纳形成全生命周期的数据治理体系,从平台、标准、管理、质量四大方面应用技术手段有效提升金融数据质量和统计报送质量,且对其他中小银行具有一定的参考性和可复用性。

    创新技术/模式应用

    1.1 应用工具做好规划,建立金融数据管理提升路径

    1.1.1 数据治理成熟度评估模型

    图1 数据治理框架

    图1 数据治理框架

    1.2 机制和管理先行,为质量提升提供制度保障

    1.2.1 组织架构和制度建设

    图2 数据治理组织架构

    图2 数据治理组织架构

    1.2.2 标准建设

    标准建设主要包括技术标准、指标标准和指标口径建设。

    ·词根:使用金融行业常用英文缩写,保证技术和业务也能通过字段名理解字段含义。

    图3 数据平台词根

    图3 数据平台词根

    ·数据字典:包括码值、字段长度等各类技术说明,保证数据开发人员使用数据的来源一致性。

    图4 数据字典

    图4 数据字典

    ·模型规范:建设9大主题模型,将数据进行有效归类,实现数据开发人员的快速入手。

    图5 主题模型分类

    图5 主题模型分类

    ·开发规范:形成统一开发,保证技术平台和底层代码的一致性,降低维护成本和学习成本。

    ·指标标准:形成行业规范标准,标注规范来源,实现与监管要求一致。

    图6 指标标准

    图6 指标标准

    ·指标口径:实现技术口径和业务口径的统一管理,降低业务和技术的门槛。

    图7 指标口径

    图7 指标口径

    1.3 夯实系统功能,实现数据全面管控提升报送质量

    1.3.1 数据平台建设 

    数据平台包括数据开发平台、数据基础平台、数据模型三部分。

    ·数据开发平台

    根据词根和数据开发规范等建立统一的可视化、组件化、流程化的数据开发平台,实现代码线上化管理模式。

    图8 数据开发模板

    图8 数据开发模板

    ·基础平台建设

    数据平台采用Hadoop作为底层基础,搭配hdfs、yarn等基础组件实现数据存储、计算等功能,为海量数据的存储和计算提供了高性能的平台基础。

    图9 数据平台基础架构

    图9 数据平台基础架构

    ·数据平台模型

    数据平台模型保证了数据开发、数据存储、数据计算的统一,形成了标准化的流程模型。

    图10 数据模型架构

    图10 数据模型架构

    1.3.2 数据治理平台建设 

    数据治理平台涵盖元数据采集、数据标准管理、数据血缘管理到数据质量监控等数据全生命周期的管理。

    图11 数据治理平台

    图11 数据治理平台

    1.3.3 指标平台建设 

    指标管理平台实现指标线上流程化管理、指标的统一存储和共享、血缘关系追踪。

    图12 指标平台

    图12 指标平台

    1.3.4 统一报送平台建设 

    统一报送平台支持业务数据的统一补录核对和复杂的信息检索,实现各类监管报送的统一登录、统一整合、统一指标、统一展现、统一管理,进行监管报送集中管理。

    项目效果评估

    通过实践经验,形成了数据平台、数据治理平台、统一报送平台的建设方案,并将开发规范纳入数据治理标准体系建设,应用大数据人工智能技术实现数据全流程管控,归纳总结形成数据治理体系方案。

    1、数据质量的提升和金融统计质量的提升

    一、根据数据治理成熟度评估模型应用方法以及调查问卷信息,通过组织、机制、流程和平台建设,确保数据治理流程在系统中有序的开展,有规划性地提升开发质量。

    二、通过数据治理平台质量监控实现源头数据的提升,实现客户信息和交易的质量提升,确保证件号码与各类信息区域的一致性,地址与区域的统一管理等,使质量提升有了抓手。

    三、提升源头数据质量、建立各类交叉、勾稽校验规则,为金融统计在行业分类、涉农、科目产品分类等方面的质量提升提供了技术和数据的保证,实现了金融统计工作的提质增效。

    四、全面梳理各报表口径,将“口口相传”的统计口径梳理成对应的技术语言,落地到指标;建立全面、完整的指标体系,实现数据的共用共享。

    2、金融数据治理方案可复用性

    鄞州银行的现状与大部分中小银行所处的阶段基本一致,从数据管理到平台建设的方案符合中小银行的数据治理诉求,可复制推广到其他金融机构,从而提升数据质量。整体数据治理方案主要包括制度、标准和平台建设、涵盖数据治理的全流程管控,尽可能的通过技术手段去发现数据质量问题,从而降低人员的人力投入。

    3、可视化展示实现业务数据的理解

    传统银行的分析系统,存在“烟囱式”架构,独立的登录界面和用户管理,导致数据和分析成果无法共享。同时业务人员过度依赖技术人员实现分析需求,导致效率太低,相似需求不断重复,数据的利用率也不够。通过建设数据平台和统一报送平台,将基础数据和汇总数据进行了全面的整合,实现数据的共用共享,业务人员可通过一个平台实现可拖拉拽的功能,从汇总指标到数据明细进行自主的数据分析和挖掘,一方面可以更快地核对数据,另一方面,可以更加高效地为经营管理提供数据支撑。

    项目牵头人

    许晓杰 科技部副总/大数据管理部总经理

    项目团队成员

    邵杰、郑嘎、童月飞、王彭林、黄炎

    责任编辑:王超

    免责声明:

    中国电子银行网发布的专栏、投稿以及征文相关文章,其文字、图片、视频均来源于作者投稿或转载自相关作品方;如涉及未经许可使用作品的问题,请您优先联系我们(联系邮箱:cebnet@cfca.com.cn,电话:400-880-9888),我们会第一时间核实,谢谢配合。

    为你推荐

    收藏成功

    确定